
ZoneAlloy: Elastic Data and Space Management for Hybrid SMR Drives

Fenggang Wu Bingzhe Li Zhichao Cao Baoquan Zhang
Ming-Hong Yang Hao Wen David H.C. Du

University of Minnesota, Twin Cities

Abstract

The emergence of Hybrid Shingled Magnetic Recording
(H-SMR) allows dynamic conversion of the recording format
between Conventional Magnetic Recording (CMR) and SMR
on a single disk drive. H-SMR is promising for its ability
to manage the performance/capacity trade-off on the disk
platters and to adaptively support different application sce-
narios in large-scale storage systems. However, there is little
research on how to efficiently manage data and space in such
H-SMR drives.

In this paper, we present ZoneAlloy, an elastic data and
space management scheme for H-SMR drives, to explore the
benefit of using such drives. ZoneAlloy initially allocates
CMR space for the application and then gradually converts
the disk format from CMR to SMR to create more space
for the application. ZoneAlloy controls the overhead of the
format conversion on the application I/O with our quantized
migration mechanism. When data is stored in an SMR area,
ZoneAlloy reduces the SMR update overhead using H-Buffer
and Zone-Swap. H-Buffer is a small host-controlled CMR
space that absorbs the SMR updates and migrates those up-
dates back to the SMR space in batches to bring down the
SMR update cost. Zone-Swap dynamically swaps “hot” data
from the SMR space to the CMR space to further alleviate
the SMR update problem. Evaluation results based on MSR-
Cambridge traces demonstrate that ZoneAlloy can reduce the
average I/O latency and limit the performance degradation of
the application I/O during format conversion.

1 Introduction
With ever-increasing demand on storage capacity, Shingled

Magnetic Recording (SMR) technology was introduced where
disk tracks are overlapped in a shingled fashion to achieve
higher areal density on the same disk platter compared to
Conventional Magnetic Recording (CMR). However, the in-
creased capacity of SMR comes with the price that updates
to these SMR tracks will cause expensive read-modify-write
overhead (which we also call SMR update overhead).

Disk PlattersCMR SMR

Figure 1: Hybrid SMR Drive

Recently, Google introduced the idea of Hybrid SMR (H-
SMR, Fig. 1) drives [1]. A single H-SMR drive can have both
CMR and SMR areas, and the format can be changed from one
type to the other using the H-SMR APIs [2,3]. H-SMR drives
are capable of balancing the IOPS and the capacity potential
of the disk platters. Moreover, the configuration of the CMR
and SMR areas in H-SMR drives can be adjusted dynamically.
Therefore, H-SMR are more flexible than solutions that have
a fixed number of CMR/SMR tracks.

H-SMR enables us to better utilize the drives based on the
different properties of CMR and SMR. As the H-SMR drive
is initially formatted into all CMR [4], an intuitive approach
is to store as much data as possible in CMR areas without
introducing any SMR update overhead. If the data grows
beyond the full CMR capacity, we can gradually convert the
disk format from CMR to SMR for larger capacity.

However, there are still many challenges before we can
fully utilize these H-SMR drives; e.g., how to arrange the
format layout and place data accordingly, how to perform
format conversion efficiently, how to reduce SMR update
overhead, and how to adapt to dynamic workloads. To the
best of our knowledge, there is little investigation on how to
deal with these problems in order to use these H-SMR drives
efficiently.

In this paper, we propose ZoneAlloy, an elastic data and
space management scheme for H-SMR drives to address the
aforementioned challenges (Fig. 2). ZoneAlloy hides the H-
SMR details and presents upper layer applications with an
elastic data space, i.e., an address space with extendable size.
When data is stored in SMR format, ZoneAlloy can also alle-
viate the SMR update overhead under dynamic I/O patterns.

To support the extendable address space, ZoneAlloy has
a zone-mapping that translates the address from the elastic

boundary

Application
read/write, extend size

SMR ZonesCMR Zones

zone mapping

0 1 2 3 4 5 6 7 8

0 1 2 3

0 1 2 3 4 5 6 7 8

outer
tracks

inner
tracksCMR SMR

newly created
space

Application
read/write, extend size

outer
tracks

inner
tracks

SMR ZonesCMR Zones

Elastic Data Space

Logical Disk Space

Physical Disk Space

zone mapping

CMR zone (online)
SMR zone (online)
CMR/SMR zone (offline)

0 1 2 3 4 5 6 7

CMR

0 1 2 3 4 5 6 7

Phase I (CMR-only) Phase II (CMR + SMR)

H-Buffer

14 15 16 17 18 194 5 6 712 13 14 15 16 17 18 199 10 118 12 139 10 118

Figure 2: ZoneAlloy Overview: Zone Mapping and Two-phase Allocation.

data space to the disk space. There is also a two-phase elastic
allocation scheme to fulfill the space extension request by
initially allocating CMR space and then converting the disk
format from CMR to SMR as necessary (§3.1). Because the
conversion operation is expensive for the application due to
the intensive valid data migration, we propose a quantized
migration mechanism (§3.2) in ZoneAlloy that is able to con-
trol the impact of the conversion operation on the application
I/O workload.

In addition, to mitigate the SMR update overhead, we pro-
pose H-Buffer and Zone-Swap in ZoneAlloy. H-Buffer (Host-
controlled Buffer, §3.3) is a small CMR space that can buffer
the SMR updates and migrate the buffered data back to the
SMR space in batches to reduce the SMR update overhead.
Zone-Swap (§3.4) can identify and exchange “hot” data in
SMR space with “cold” data in CMR space to further alleviate
the SMR read-modify-write overhead.

Evaluations using MSR-Cambridge traces [5] show that
ZoneAlloy outperforms baseline schemes in average latency
and can finish the format conversion efficiently with control-
lable impact on the application I/O performance.

2 Hybrid SMR Preliminaries
In the hybrid SMR API [1–4,6,7], the same physical media

can be formatted into either CMR zones or SMR zones, where
a zone is a consecutive LBA space with a size of 256MiB.
Each SMR zone has a write pointer indicating where the
next write should go to enforce sequential write. Following
the most popular Host-Managed SMR model [8, 9], the host
cannot directly write to the addresses other than the write
pointer’s location. Therefore, for SMR updates which are not
targeted to the write pointer’s location, existing data in the
SMR zone needs to be read out, combined with the updates,
and written back again, causing serious SMR update overhead.

Logical disk space of an Hybrid SMR drive is partitioned
into the CMR domain (lower address space) and the SMR
domain (higher address space) (Fig. 2) [6,7]. According to [2],
the host can convert any number of consecutive zones from
one format to the other with the H-SMR APIs, which takes
an extent of zones from one domain offline and brings the
corresponding zones in the other domain online. Here “online”
means the zone is backed with the physical disk space, and
vice versa. Due to the different areal density of CMR and

SMR, the number of zones will usually be different from that
before the conversion. For example, supposing a hypothetical
SMR to CMR areal density ratio of 1.5:1, 2GiB of CMR
space (8 zones) could be typically converted into 3GiB of
SMR space (12 zones). Note that these APIs will destroy
the stored data in the zones being converted, thus the host is
responsible for protecting the valid data in these zones.

We define format conversion, or conversion, as the proce-
dure where the host changes some disk space format from
CMR to SMR for more capacity. A conversion comprises of
two operations: valid data migration and H-SMR API invo-
cation. For example, when converting 2GiB of CMR space,
valid data will first be read from the CMR zones (∼8 sec, as-
suming a sequential throughput of 250MB/s), then the space
will be changed to SMR format using the H-SMR API (50
ms [1]), resulting in 3GiB of SMR zones. Then the 2GiB of
valid data will be written to the newly created SMR zones
(∼8 sec), leaving 1GiB of empty SMR space. Note that such
conversion is time consuming and the valid data migration
dominates the conversion overhead.

3 ZoneAlloy Design
3.1 Elastic Space Mapping and Allocation

Overview and Zone Mapping (Fig. 2). The elastic data
space is divided into zones (256MiB). Each zone in the elastic
data space is mapped to an online CMR or SMR zone in the
drive’s logical disk space (§2).

To reduce the SMR update overhead, in ZoneAlloy, we
propose to use a small portion of the CMR space as a write
buffer, namely H-Buffer (Host-controlled Buffer §3.3), with
a size proportional to the SMR partition.

Two-phase Allocation. Disk space is allocated in two
phases. In the first phase (Fig. 2 left), the disk is initially
all in CMR format [4]. ZoneAlloy allocates new space for
the application from outer tracks to inner tracks, because the
outer tracks are more performant due to the zone-bit encoding
and the short-stroking effect.

In the second phase (Fig. 2 right), the disk format needs
to be gradually converted from CMR to SMR when the ap-
plication needs more capacity (§2). ZoneAlloy performs con-
version from inner tracks to outer tracks; i.e., the innermost
area is first to convert from CMR to SMR, similar to the pro-

timeio time

issue complete

io time

issue complete

timeio time

issue complete

io time

issue complete

timeio time

issue complete

io time

issue complete

latency increaseapplication io

valid data migr. io

seek
time

seek
time

small migration quantum

largemigration quantum

latency

latency increase

Figure 3: Impact of the size of migration quantum on the application
performance. The larger the migration quantum, the greater the
increase of latency the application experiences, but the sooner the
valid data migration completes.

cedure proposed in [1]. The H-Buffer is located in the outer
tracks for performance and will expand proportionally as the
SMR partition grows. In each conversion, the zone mapping
is updated accordingly and persisted to ensure a linear elastic
data space with no LBA gaps.

3.2 Quantized Migration
Conversion is time consuming and intrusive to the applica-

tion I/Os. For example, to make free space for a requested size
quickly, a simple blocking conversion stops all the application
I/Os until the requested space has been created. Consequently,
the application I/O will be delayed by seconds, or even min-
utes, depending on the size of the requested space (§2). This
is not tolerable for some latency-sensitive applications.

There is an intrinsic trade-off between the performance of
the application I/O and the conversion efficiency. Theoreti-
cally, the valid data migration job can be broken down into
small piecemeal migrations and opportunistically inserted into
the time intervals between adjacent application I/Os. In this
case, the application I/O will experience little performance
degradation. However, it will take a longer time for the conver-
sion to finish, especially when the workload is intense without
much time between adjacent I/Os.

Based on this observation, we propose a quantized migra-
tion mechanism in ZoneAlloy that helps the application find
a favorable spot in the trade-off space. We define the migra-
tion quantum as the smallest-size unit of data to migrate that
will carry to completion even after the application I/O arrives
(Fig. 3). A small migration quantum has less impact on the
application, since the migration can be interrupted at a finer
granularity causing less increase of latency to the application
I/O. In contrast, a large migration quantum gives priority to
the migration I/O, so the conversion will finish sooner, but the
application I/O will have a greater latency increase.

The key insight here is that the maximum latency increase
is proportional to the size of a migration quantum; therefore,
adjusting the size of the migration quantum provides a mecha-
nism that helps the application create free space as quickly as
possible while providing a controllable performance degrada-
tion. The application can specify the value of the acceptable
increase of latency. Then ZoneAlloy will determine a proper

HEAD
grow

TAIL
clean

SMR ZonesH-Buffer

evict

SMR ZonesH-Buffer

evict

loop back

data blocks

In-place FIFO Log

Loop-back Log
evict

HEAD
grow

TAIL
clean

data blocks

hot
cold

Figure 4: H-Buffer Policies: In-place FIFO log allocates redirected
SMR blocks to the head and cleans from the tail by evicting every
block belonging to the same zone as the tail block; Loop-back log
distinguishes hot and cold SMR zones and only evicts data of cold
zones out of H-Buffer while keeping hot data in H-Buffer by “re-
queuing” it to the head of the log (loop back).

migration quantum size based on the disk parameters to en-
sure the increase of latency is bounded by that value. To
ensure reliability during the migration, a persistent spare copy
of the first two CMR zones of a migration quantum is created
(e.g. in reserved SMR zones or non-volatile memory), then
the two CMR zones are converted into three SMR zones that
can store data copied from the two CMR zones to be con-
verted next, so on and so forth. The data of the first two zones
will be copied to the SMR zones at last.

3.3 H-Buffer Management Policies
Updating an SMR zone directly using read-modify-write

introduces significant performance overhead. Therefore, we
propose to redirect the data into a small CMR buffer space
(Host-controlled Buffer, or H-Buffer) to accumulate multiple
updates and then migrate the data back to the SMR zone in a
batch to amortize the read-modify-write overhead. Note that
if an SMR write targets the write pointer, it will be directly
issued to the SMR zone without entering the H-Buffer.

Improved block-based LRU. A first intuition is to lever-
age existing caching policies designed for main memory (e.g.,
LRU) to “cache” frequently updated data in the H-Buffer.
As a result, subsequent updates to those data will happen
in the CMR zones without introducing further SMR update
overhead. However, directly adopting those caching policies
results in poor performance because cache eviction happens
frequently at the block granularity and each eviction reclaims
one block of free space but triggers one expensive zone read-
modify-write. Therefore, we design an improved block-based
LRU policy that evicts the whole zone containing the victim
block out of the H-Buffer instead of only evicting the victim
block. Here evicting a zone means evicting every block from
the H-Buffer that belongs to that zone. In this case, we pay the
same price to read-modify-write one zone but reclaim more
space, thus the eviction happens less frequently. However,
this improved block LRU policy will fragment the free space
of the H-Buffer, causing random I/Os which are not friendly
to disk drives.

In-place FIFO Log. To avoid fragmenting the free space,
we design an in-place FIFO log policy (upper figure in Fig. 4)
that organizes the redirected data in a log structure. Redirected

CMR Space SMR SpaceH-Buffer

CMR swap candidate

SMR swap candidate

CMR Space SMR SpaceH-Buffer

evicted blocks

Figure 5: Zone-Swap: CMR and SMR swap candidate zones are
read out, combined with the updated blocks evicted from H-Buffer,
and written back to each other’s location.

data, if already buffered in the log, will be in-place updated.
Otherwise, it will be allocated to the log head pointer. Free
space is reclaimed from the log tail pointer by log cleaning,
which evicts the zone containing the tail block (the block at
the tail pointer) and advances the tail pointer. Note that if the
tail block has already been evicted, the tail pointer will be
advanced without any eviction. However, the drawback of an
in-place FIFO log is that it strictly follows the FIFO ordering
and does not distinguish different types of zones. We observe
that frequently updated data blocks will come back to the H-
Buffer soon after they were evicted and take up the space that
was just been freed. In this case, the time consumed to read-
modify-write the original SMR zone is wasted. Therefore,
it is beneficial to distinguish different zones when making
eviction decisions.

Loop-back Log. To improve from the in-place FIFO pol-
icy, we propose a loop-back log policy for the H-Buffer that
identifies hot zones and “re-queues” the data of hot zones
from the log tail to the log head without evicting them (called
“loop back,” see bottom figure in Fig. 4). Here we first define
an epoch as the time for the log head pointer to go through
a full cycle and come back to the beginning of the H-Buffer.
Then a hot zone is defined as a zone that has all its buffered
blocks in the current epoch written again in the next epoch.
In this case, evicting this hot zone pays the price of one read-
modify-write but gains little space back, so it is better to keep
it in the H-Buffer instead of evicting it. Although alternatives
exist, we find that block LRU is simple yet effective in predict-
ing hot zones where zones that have the blocks only appearing
in the MRU half are considered hot.

3.4 Zone-Swap Scheme
Ideally, “hot” data is favorably allocated to CMR zones,

so the H-Buffer cleaning cost will be less and the overall
performance is better. However, this is not always the case.
For example, after conversion, empty SMR space is created
to store new data. However, new data may turn out to be “hot”
and causes significant SMR update overhead. Similarly, data
stored in the CMR space near the CMR/SMR boundary will
be migrated to the SMR space during conversion, and it may
also be “hot.” Further, the I/O pattern keeps evolving, and
existing data in the SMR space may become “hot” too.

To address this, we propose the Zone-Swap mechanism in
ZoneAlloy that can dynamically exchange data between SMR

and CMR zones to concentrate “hot” data in CMR zones.
Although the idea of Zone-Swap is simple, finding good zone
candidates to swap is not a trivial job, because swapping is
an expensive operation that involves extra effort to read and
write the zones. If it is not designed carefully, the overhead of
swapping can possibly negate its benefit and bring the overall
performance down.

We found that the hot/cold zone classification of the swap-
ping decision is different from that in the H-Buffer eviction
design. The space occupancy of a zone in the H-Buffer mat-
ters more in reducing the H-Buffer cleaning overhead than
the block access recency as used in the H-Buffer. This is be-
cause a zone taking up more H-Buffer space, no matter if it is
evicted or looped back in the H-Buffer, reduces the “equiva-
lent” H-Buffer size, and therefore the H-Buffer fills up sooner
and log cleaning occurs more frequently.

Therefore, Zone-Swap evaluates all zones in the H-Buffer
at the beginning of each epoch and labels the zones with
an occupancy above a threshold as “SMR swap candidates.”
Such SMR zones will be evicted when encountered by the log
tail pointer in log cleaning. CMR zones that were not updated
during last epoch become “CMR swap candidates.” When an
SMR swap candidate zone is evicted, it will be paired up with
a CMR swap candidate if available. Then the data in the CMR
and SMR candidate zones will be read and written back to
each other’s location after combining the updated data evicted
from the H-Buffer (Fig. 5).

4 Evaluation
4.1 Experiment Setup

As there are no H-SMR products available, we built an H-
SMR simulator with equations extracted from DiskSim [10].
Microsoft Research (MSR) Cambridge traces [5] are used for
evaluation. The disk’s full capacity is set to 1TB to match the
LBA ranges of the traces. The SMR to CMR areal density
ratio is set to 1.5:1.

4.2 Overall Performance
In this section, we evaluate the overall performance of

ZoneAlloy (H-Buffer using loop-back log policy with Zone-
Swap enabled, denoted by zone-alloy) against three H-
Buffer baselines without Zone-Swap: H-Buffer using im-
proved block-based LRU policy (improved-lru), H-Buffer
using in-place FIFO policy (fifo), and H-Buffer using loop-
back log policy (loop-back). Only the traces with a write
footprint greater than 10GB are used, because ones with a
smaller write footprint do not fill up the H-Buffer and will not
show any difference in performance. To stress test the system,
the H-Buffer to SMR partition size ratio is set to as low as
0.02%, and the disk usage is set to 99.9% so that the majority
of the disk is in SMR format. Average latency is measured
and plotted in Fig. 6.

As seen in the figure, in-place FIFO reduces the aver-
age latency from the improved block-based LRU by 1.4×

-50

50

150

250 improved-lru fifo loop-back zone-alloy

0

10

hm_0 prn_0 prn_1 proj_0 proj_1 proj_2 prxy_0 prxy_1 rsrch_0 src1_0 src1_1 src1_2 src2_2 stg_0 ts_0 usr_0 usr_1 usr_2 web_0Av
er

ag
e

La
te

nc
y

(m
s)

Figure 6: Overall performance of ZoneAlloy compared with three H-Buffer-only baselines. Note that the break of axis in the middle.

 0
 50

 100
 150
 200

 3600 3800 4000 4200 4400 4600
 0

 100

 200

 300
normal I/O, no conversion

La
te

nc
y

(m
s)

Zo
ne

 C
ou

ntI/O latency

 0
 50

 100
 150
 200

 3600 3800 4000 4200 4400 4600
 0

 100

 200

 300
acceptable incr. of lat. 60ms

La
te

nc
y

(m
s)

Zo
ne

 C
ou

ntI/O latency
Zones to Convert

 0
 50

 100
 150
 200

 3600 3800 4000 4200 4400 4600
 0

 100

 200

 300
acceptable incr. of lat. 100ms

La
te

nc
y

(m
s)

Zo
ne

 C
ou

nt

Time (second)

I/O latency
Zones to Convert

Figure 7: Evaluating the quantized migration mechanism. Larger
acceptable increase of latency leads to shorter conversion time.

(rsrch_0, write footprint 10GB) to 45× (proj_0 write foot-
print 144GB). The difference in performance improvement is
due to the different write footprint: the larger the write foot-
print, the more data is redirected to H-Buffer, and the greater
the performance gap will be. Comparing loop-back log and
the in-place FIFO log, loop-back log performs similarly or
better in all the 19 traces (max improvement at prn_1, a 4.4%
reduction of average latency with 7% decrease in the zone
read-modify-writes). Zone-Swap further improves from the
loop-back log by up to 29% at proj_0, where the count of
zone read-modify-writes is reduced from 2989 to 507 at a
cost of only 55 zone-swaps. We notice only one case where
Zone-Swap makes the performance worse (trace proj_1).
This is because 89% of the operations in this trace are read,
and swapping causes the logical adjacent data to be far apart,
introducing large seek latency. Swapping algorithms consid-
ering the seek distance are left as future work.

4.3 Conversion Scheme Evaluation
In this section we evaluate the effectiveness of the quan-

tized migration using a real-world workload (proj_1). In
Fig. 7, the latency of every request (left y-axis) is depicted as
a black dot. The top figure shows the normal I/O performance
without a space extension request (hence no conversion hap-
pening), and the middle and bottom figures show the cases
where the application is requesting 25GiB of new space (200
zones to convert) with acceptable increase of latency set to
60 ms and 100 ms, respectively. We also plot the number of
remaining zones to convert (red line, right y-axis) to indicate
the start and the end of the conversion.

The results show that ZoneAlloy is able to perform the con-

version efficiently while controlling the increase of latency
within the given bound. With a lower acceptable increase of
latency (60 ms, middle figure), ZoneAlloy finishes the conver-
sion in a longer time (601 seconds). In contrast, the conversion
time reduces to 432 seconds when the the acceptable increase
of latency rises to 100 ms. This is quite efficient given the
fact that the blocking conversion also takes ∼400 seconds to
convert the same number of zones but blocks the application
I/O for over 6 minutes.

5 Related Work
Track-based solutions for SMR such as [11–19] leverage

the track/sector overlapping information to help with the
data placement designs. The eventual establishment of a stan-
dard zoned block device interface [8, 9] enabled investigation
of three SMR models; namely, drive-managed (DM), host-
managed (HM), and host-aware (HA). Skylight [20, 21] stud-
ies the internals of the DM-SMR model, while Wu et. al eval-
uate and characterize the HA-SMR model [22, 23]. ZEA [24],
SMORE [25, 26], and GearDB [27] explore the data man-
agement and application design of the HM-SMR model in
storage systems. Interlaced Magnetic Recording (IMR) has
update issues similar to SMR as investigated in [28–30]. Our
work differs from the existing work in that we focus on the
unique conversion characteristic and I/O handling issues of
the incipient hybrid SMR technology.

6 Conclusion and Future Work
The emerging hybrid SMR drive with a mix of CMR and

SMR zones provides the flexibility to convert the disk format
on demand. We design and implement ZoneAlloy, an elastic
data and space management scheme that hides the H-SMR de-
tails and presents an elastic data space to the application. Such
elastic data space has an extendable size, which is supported
by the two-phase allocation design. ZoneAlloy has a quan-
tized migration mechanism to help applications make a good
trade-off to perform conversion efficiently while bounding
their performance degradation. ZoneAlloy also leverages the
proposed H-Buffer and Zone-Swap to reduce the SMR update
overhead. Evaluations show that ZoneAlloy can improve the
I/O performance from the baseline schemes and can perform
format conversion with bounded performance degradation.

Future work includes investigation into other possible
CMR/SMR format layout alternatives and the application-
aware design.

7 Discussion Topics
We would like to ask for some feedback about what the

current pain points are in the cloud storage industry that can be
alleviated by the H-SMR drives. What are the new application
scenarios that can be supported by such drives? What is the
typical way to expand storage? What is the current solution
to handle the trade-off between price, space, and performance
and what is enabled by the advent of the Hybrid SMR drives?
Does re-purposing a storage system often happen? Is the
on-line conversion really necessary/helpful? What are the
possible/potential use cases for H-SMR?

What are the other possible abstractions and application
models of the Hybrid SMR drive? This paper has provided one
possibility, the elastic data space abstraction. Other abstrac-
tions/models also exist, for example, there could be a physical
space manager to carve out one piece of physical SMR space
and let the application decide how to use that physical space.
Although we do not assume any knowledge about the applica-
tion in this paper, involving application awareness is another
promising direction. For example, when giving out space to
an archival application, we may directly provide SMR space
instead of starting from all CMR space. For other applica-
tions, maybe a mix of CMR and SMR is more desirable, with
a user-defined or system-inferred space ratio between them.
What are the other possibilities?

Another important question to ask is which layer in the
I/O stack we should use to solve those H-SMR data manage-
ment issues. There are many alternatives, e.g., disk firmware,
block layer, RAID, LVM, file systems, or databases (relational
databases, key-value stores, etc.). Managing such drives in a
lower layer can hide the hybrid SMR details without requiring
the higher layers to be changed. In contrast, making the higher
layers hybrid SMR-aware can make better decisions about
the management as the higher layer has more information
about the workload. However, managing the Hybrid SMR at
a higher level limits the impact to a specific application and
may not benefit other higher-layer applications.

There are also some open design issues for Hybrid SMR.
We have covered some of the possibilities in this paper. How-
ever, there is still vast open space for research and investi-
gation. One example is the Format Layout problem. What
are the alternatives to arrange CMR/SMR partitions? Could
an interleaved layout be any better? What are the trade-offs?
What are the proper criteria to determine the location and size
of the H-Buffer?

Additional challenges may include scalability and hetero-
geneity. In a large-scale storage system, what are the issues if
using tens of thousands of hybrid SMR drives? Do we format
them at once or gradually? How do we handle the data mi-
gration? In a mixed cluster with high-end and low-end SSDs,
non-volatile memory, etc., how do we fit the hybrid SMR
drive in to make a good trade-off among price, capacity, and
performance?

Acknowledgments
We thank the anonymous reviewers and our shepherd, Bill

Bolosky, for their feedback. This work was partially sup-
ported by NSF I/UCRC Center Research in Intelligent Storage
and the following NSF awards 1439662, 1525617, 1536447,
1708886, 1763008, and 1812537.

References
[1] Google. Dynamic hybrid-smr: an ocp pro-

posal to improve data center disk drives.
https://blog.google/products/google-
cloud/dynamic-hybrid-smr-ocp-proposal-
improve-data-center-disk-drives/.

[2] Timothy Feldman. Flex overview. http:
//t13.org/Documents/UploadedDocuments/
docs2018/f17156r0-Flex_Overview.pdf.

[3] Bill Boyle and Curtis E. Stevens. Realms
api. http://www.t10.org/cgi-bin/ac.pl?t=d&f=
17-158r1.pdf.

[4] Tim Feldman. Flex dynamic recording. USENIX ;login:,
43(1), 2018.

[5] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write off-loading: Practical power manage-
ment for enterprise storage. ACM Transactions on Stor-
age (TOS), 4(3):10, 2008.

[6] Seagate Technology. New flex dynamic record-
ing method redefines the data center hard drive.
https://blog.seagate.com/intelligent/new-
flex-dynamic-recording-method-redefines-
data-center-hard-drive/.

[7] Western Digital. Dynamic hybrid smr. https://blog.
westerndigital.com/dynamic-hybrid-smr/.

[8] INCITS T10 Technical Committee. Information tech-
nology - zoned block commands (zbc). 2015.

[9] INCITS T13 Technical Committee. Zoned-device ata
command set (zac) working draft.

[10] John S Bucy, Jiri Schindler, Steven W Schlosser, and
Gregory R Ganger. The disksim simulation environ-
ment version 4.0 reference manual (cmu-pdl-08-101).
Parallel Data Laboratory, page 26, 2008.

[11] Saurabh Kadekodi, Swapnil Pimpale, and Garth A Gib-
son. Caveat-scriptor: write anywhere shingled disks. In
Proc. HotStorage’15, Santa Clara, CA, USA., 2015.

[12] Ahmed Amer, Darrell DE Long, Ethan L Miller, J-F
Paris, and SJT Schwarz. Design issues for a shingled
write disk system. In Proc. MSST’10, Incline Village,
NV, USA., 2010.

https://blog.google/products/google-cloud/dynamic-hybrid-smr-ocp-proposal-improve-data-center-disk-drives/
https://blog.google/products/google-cloud/dynamic-hybrid-smr-ocp-proposal-improve-data-center-disk-drives/
https://blog.google/products/google-cloud/dynamic-hybrid-smr-ocp-proposal-improve-data-center-disk-drives/
http://t13.org/Documents/UploadedDocuments/docs2018/f17156r0-Flex_Overview.pdf
http://t13.org/Documents/UploadedDocuments/docs2018/f17156r0-Flex_Overview.pdf
http://t13.org/Documents/UploadedDocuments/docs2018/f17156r0-Flex_Overview.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=17-158r1.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=17-158r1.pdf
https://blog.seagate.com/intelligent/new-flex-dynamic-recording-method-redefines-data-center-hard-drive/
https://blog.seagate.com/intelligent/new-flex-dynamic-recording-method-redefines-data-center-hard-drive/
https://blog.seagate.com/intelligent/new-flex-dynamic-recording-method-redefines-data-center-hard-drive/
https://blog.westerndigital.com/dynamic-hybrid-smr/
https://blog.westerndigital.com/dynamic-hybrid-smr/

[13] Ahmed Amer, JoAnne Holliday, Darrell DE Long,
Ethan L Miller, Jehan-François Pâris, and Thomas
Schwarz. Data management and layout for shingled
magnetic recording. IEEE Transactions on Magnetics,
47(10):3691–3697, 2011.

[14] Yuval Cassuto, Marco AA Sanvido, Cyril Guyot,
David R Hall, and Zvonimir Z Bandic. Indirection sys-
tems for shingled-recording disk drives. In MSST’10,
Incline Village, NV, USA., 2010.

[15] David Hall, John H Marcos, and Jonathan D Coker.
Data handling algorithms for autonomous shingled mag-
netic recording hdds. IEEE Transactions on Magnetics,
48(5):1777–1781, 2012.

[16] Chung-I Lin, Dongchul Park, Weiping He, and
David HC Du. H-swd: Incorporating hot data iden-
tification into shingled write disks. In 20th IEEE
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems (MASCOTS12), 2012.

[17] Dongchul Park, Chung-I Lin, and David HC Du. H-swd:
A novel shingled write disk scheme based on hot and
cold data identification. In FAST12, San Jose, CA, USA.,
2012.

[18] Weiping He and David HC Du. Novel address map-
pings for shingled write disks. In Proc. HotStor-
age’14,Philadelphia, PA, USA., 2014.

[19] Weiping He and David HC Du. Smart: An approach
to shingled magnetic recording translation. In 15th
USENIX Conference on File and Storage Technologies
(FAST17), 2017.

[20] Abutalib Aghayev and Peter Desnoyers. Skylight–a
window on shingled disk operation. In Proc. FAST’15,
Santa Clara, CA, USA.

[21] Abutalib Aghayev, Mansour Shafaei, and Peter Desnoy-
ers. Skylight – a window on shingled disk operation.
ACM Trans. Storage, 11(4):16:1–16:28, October 2015.

[22] Fenggang Wu, Ming-Chang Yang, Ziqi Fan, Baoquan
Zhang, Xiongzi Ge, and David H.C. Du. Evaluating
host aware smr drives. In 8th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 16),
2016.

[23] Fenggang Wu, Ziqi Fan, Ming-Chang Yang, Baoquan
Zhang, Xiongzi Ge, and David HC Du. Performance
evaluation of host aware shingled magnetic recording
(ha-smr) drives. IEEE Transactions on Computers,
66(11):1932–1945, 2017.

[24] Adam Manzanares, Noah Watkins, Cyril Guyot, Damien
LeMoal, Carlos Maltzahn, and Zvonimr Bandic. Zea,
a data management approach for smr. In 8th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), 2016.

[25] Peter Macko, Xiongzi Ge, J Kelley, D Slik, et al. Smore:
A cold data object store for smr drives. In Proceedings of
the 33rd International Conference on Massive Storage
Systems and Technology (MSST’17), 2017.

[26] Peter Macko, Xiongzi Ge, John Haskins Jr, James Kel-
ley, David Slik, Keith A Smith, and Maxim G Smith.
Smore: A cold data object store for smr drives (extended
version). arXiv preprint arXiv:1705.09701, 2017.

[27] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhi-
wen Liu, Changsheng Xie, and Xubin He. Geardb: A
gc-free key-value store on hm-smr drives with gear com-
paction. In 17th USENIX Conference on File and Stor-
age Technologies (FAST’19), pages 159–171, 2019.

[28] Kaizhong Gao, Wenzhong Zhu, and Edward Gage.
Write management for interlaced magnetic recording
devices, November 29 2016. US Patent 9,508,362.

[29] Kaizhong Gao, Wenzhong Zhu, and Edward Gage. In-
terlaced magnetic recording, August 8 2017. US Patent
9,728,206.

[30] Fenggang Wu, Baoquan Zhang, Zhichao Cao, Hao Wen,
Bingzhe Li, Jim Diehl, Guohua Wang, and David HC
Du. Data management design for interlaced magnetic
recording. In 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), 2018.

	Introduction
	Hybrid SMR Preliminaries
	ZoneAlloy Design
	Elastic Space Mapping and Allocation
	Quantized Migration
	H-Buffer Management Policies
	Zone-Swap Scheme

	Evaluation
	Experiment Setup
	Overall Performance
	Conversion Scheme Evaluation

	Related Work
	Conclusion and Future Work
	Discussion Topics

